Elucidating distinct roles for NF1 in melanomagenesis.
نویسندگان
چکیده
BRAF mutations play a well-established role in melanomagenesis; however, without additional genetic alterations, tumor development is restricted by oncogene-induced senescence (OIS). Here, we show that mutations in the NF1 tumor suppressor gene cooperate with BRAF mutations in melanomagenesis by preventing OIS. In a genetically engineered mouse model, Nf1 mutations suppress Braf-induced senescence, promote melanocyte hyperproliferation, and enhance melanoma development. Nf1 mutations function by deregulating both phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. As such, Nf1/Braf-mutant tumors are resistant to BRAF inhibitors but are sensitive to combined inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase and mTOR. Importantly, NF1 is mutated or suppressed in human melanomas that harbor concurrent BRAF mutations, NF1 ablation decreases the sensitivity of melanoma cell lines to BRAF inhibitors, and NF1 is lost in tumors from patients following treatment with these agents. Collectively, these studies provide mechanistic insight into how NF1 cooperates with BRAF mutations in melanoma and show that NF1/neurofibromin inactivation may have an impact on responses to targeted therapies.
منابع مشابه
Normal hematopoiesis and neurofibromin-deficient myeloproliferative disease require Erk.
Neurofibromatosis type 1 (NF1) predisposes individuals to the development of juvenile myelomonocytic leukemia (JMML), a fatal myeloproliferative disease (MPD). In genetically engineered murine models, nullizygosity of Nf1, a tumor suppressor gene that encodes a Ras-GTPase-activating protein, results in hyperactivity of Raf/Mek/Erk in hematopoietic stem and progenitor cells (HSPCs). Activated Er...
متن کاملElucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning.
Neurofibromatosis type 1 (NF1) is a common autosomal dominant neurologic condition characterized by significant clinical heterogeneity, ranging from malignant cancers to cognitive deficits. Recent studies have begun to reveal rare genotype-phenotype correlations, suggesting that the specific germline NF1 gene mutation may be one factor underlying disease heterogeneity. The purpose of this study...
متن کاملIssues affecting molecular staging in the management of patients with melanoma
Prediction of metastatic potential remains one of the main goals to be pursued in order to better assess the risk subgroups of patients with melanoma. Detection of occult melanoma cells in peripheral blood (circulating metastatic cells [CMC]) or in sentinel lymph nodes (sentinel node metastatic cells [SNMC]), could significantly contribute to better predict survival in melanoma patients. An ove...
متن کاملDistinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation.
Neurofibromatosis type 1 (NF1) is a dominant genetic disorder that causes tumors of the peripheral nervous system. In addition, >40% of afflicted children have learning difficulties. The NF1 protein contains a highly conserved GTPase-activating protein domain that inhibits Ras activity, and the C-terminal region regulates cAMP levels via G-protein-dependent activation of adenylyl cyclase. Behav...
متن کاملReduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice.
Learning and behavioral abnormalities are among the most common clinical problems in children with the neurofibromatosis-1 (NF1) inherited cancer syndrome. Recent studies using Nf1 genetically engineered mice (GEM) have been instructive for partly elucidating the cellular and molecular defects underlying these cognitive deficits; however, no current model has shed light on the more frequently e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer discovery
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2013